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Abstract  As for deterministic ordinary differential equations, various numerical schemes are 
proposed for stochastic differential equations. In this note, we treat weak numerical solutions for 
stochastic differential equations with multiplicative noise. Some results of the mean error by the 
simplified weak Euler scheme and its numerical asymptotic stability are shown, and their relation 
is illustrated through some numerical experiments. 

1. Introduction

We consider the Itô scalar stochastic differential equations (SDEs) with 
multiplicative noise 
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where f : , g  and W(t) is a scalar Wiener process(t 0). A Wiener 
process is a Gaussian process with the property that 
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We assume that both f and g are sufficiently smooth so that equation (1) has a unique 
solution. We will treat weak numerical solutions (the first two moments) for (1) in 
this note. 
   For the SDE (1), Euler-Maruyama scheme has the form 
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where h and nW  stand for the step-size and the increment of the Wiener process, 
respectively. The Euler-Maruyama scheme (2) has order of weak convergence 1[4]. 
In weak approximation, it is known that the random increments nW of the Wiener 
process can be replaced by other convenient approximations nŴ which have similar 
moment properties to the nW [4]. For example we could use the two-point 
distributed random variable 
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for the Euler-Maruyama scheme (2). This leads to the simplified weak Euler 
scheme �����
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Now we will estimate mean error by simplified weak Euler scheme through 
some numerical experiments. We test the following example whose means is 
submartingale (mean increasing). 

Example 1
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   The exact solution of the equation (4) is 
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Also the expectation of the solution of (4) is 
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We shall compute the k-th trajectory hk  of simplified weak Euler scheme (3) 
with step-size h and estimate the mean error with N trajectories at T by 
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We chose T = 1.0, N = 20000, and step-size  h = 2-5, 2-6, 2-7. We show the results of 
Example 1 for two cases (i) = 0.1 and (ii) = 5 in Figure 1. 

: = 0.1 : = 5 
Figure 1: Mean error by simplified weak Euler scheme for Example 1. 
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   From Figure 1 we can see that the log2 of the mean error closely follows a 
straight line of slope 1 in log2 h for (i) = 0.1. However the result of (ii) = 5 
indicates that it does not converge. Namely, it is not appear to be the rate of 
convergence of the simplified weak Euler scheme for (ii). In fact this phenomenon is 
deeply related to the asymptotic stability in SDEs. We will describe the numerical 
asymptotic stability in the following section. 

2. Numerical asymptotic stability 

   We shall briefly introduce the notion of numerical asymptotic stability in this 
section. Consider the following scalar linear test equation, 
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with the initial condition 10 . Since the exact solution of (5) is 
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we can see that the equilibrium position 0t is stochastically asymptotically 

stable if 0
2
1 2  [1]. For Example 1, the case (ii) 5  is stochastically 

asymptotically stable, wheres the case (i) 1.0 is not stochastically asymptotically 
stable.
   We shall give the following definition which is found in [2,3]. 

Definition 1 When a numerical scheme is applied to the asymptotically stable 
equation (5) and generating the sequence n , it is said to be numerically 
asymptotically stable if 
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   We proposed the notion of T -stability for a numerical scheme with respect to its 
trajectory [6]. 

Definition 2 Assume that the test equation (5) is stochastically asymptotically stable. 
The numerical scheme equipped with a specified driving process said to be T-stable 
if
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holds for the driving process. 
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   Now we will seek for T-stable condition of simplified weak Euler scheme (3). 
The averaged stability function T ,;h of the scheme for the test equation (5) is 

hhh 221

and the necessary and sufficient condition for T-stability is T 1,;h  [6]. 

   For Example 1 (ii) 
2
1 and ,5 we have 
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2
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We finally get the interval of step-size h

965742485742480 hh

We adopt the interval 08305742480 h because of its weak convergence. 
Note that we chose to the values of step-size are smaller than 0.083 in the Example 1 
(ii) =5.
  Now we can see the phenomenon in Example 1 (ii) by the long numerical 
time-integration for it. We shall compute the arithmetic mean n at t =nh,namely
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with h =2-5 and N=20000 for Example 1 (ii). The result is shown in Figure 2. 

Figure 2: Example 1 (ii) 52,5 h  and N 20000.
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   We therefore obtain the following result for the asymptotic stability of the 

arithmetic mean n .

Proposition 1 If the numerical solution n  for the test equation (5) is numerically 
asymptotically stable, then
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Note that we can get the same result for the mean-square value of the numerical 
solution for the test equation (5) [7]. 

3. Conclusions

   We described that weak numerical solution for SDEs with multiplicative noise is 
influenced by its asymptotic numerical stability in the present note. To avoid the 
incorrect numerical results of weak numerical schemes, we proposed the another 
type of error analysis [5]. It could be solved by separating mean error  into two 
parts (deterministic and stochastic), namely 
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h,k,
~ is the time-discrete realized solution at T with step-size h for k-th trajectory. 

For the Example 1, h,k,
~ has the following form 
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where h,k,Ŵ is the discretized Wiener driving process of step-size h, namely 
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Note that kiW ,
ˆ is the same random variable used in simplified weak Euler scheme 

(3). We called h,k,
~ the realized solution, det  as deterministic part, sto  as 

stochastic part. We anticipate that the rate of convergence of the scheme appears in 
deterministic part, the sampling error and the influence of asymptotic stability 
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appear in stochastic part. We show the numerical result of det  for Example 1 in 
Figure 3. Figure 3 indicates that the rate of convergence of weak Euler scheme is 1 
for both (i) and (ii). 

: 1.0 : 5

Figure 3: det  of simplified weak Euler scheme for Example 1. 
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