Jacobian determinant and system of parameters ## **Shin IKEDA** #### **Abstract** We characterize systems of parameters of a formal power series ring by their Jacobian determinants. #### Introduction Jacobian determinants appear in many areas of mathematics and play important roles. Commutative ring theory is not an exception. In this paper R denotes a formal power series ring k [[x_1 , x_2 , ..., x_d]] over a field k of characteristic 0 and m denotes the maximal ideal of R. A subset $\{f_1, ..., f_d\}$ of m is called a system of parameters of R if R/(f_1 , f_2 , ..., f_d) is a finite dimensional vector space over k. The purpose of this paper is to characterize a system of parameters of R by its Jacobian determinant with respect to x_1 , x_2 , ..., x_d . ## **Preliminaries** We begin with recalling the definition of a Jacobian matrix and a Jacobian determinant. Let $f_1, ..., f_r \in R$ then the $r \times d$ matrix ($\partial f_1/\partial x_j$) is called the Jacobian matrix of $f_1, ..., f_r$ with respect to $x_1, ..., x_d$ and det ($\partial f_1/\partial x_j$) is called the Jacobian determinant of $f_1, ..., f_r$ with respect to $x_1, ..., x_d$. We refer the reader to [M] for fundamental properties of Jacobian matrices and determinants. **Lemma 1.** If $f_1, ..., f_d$ form a system of parameters of R then ($f_1, ..., f_d$) $m = (f_1, ..., f_d de((\partial f_i/\partial x_j)))$, where $det((\partial f_i/x_j))$ is the Jacobian determinant of $f_1, ..., f_d$ with respect to $x_1, ..., x_d$ and $det((\partial f_i/\partial x_j)) = (f_1, ..., f_d)$. # Proof. See[K] Appendices F. **Lemma 2.** Let Q be an m-primary ideal of R which is not a complete intersection. For any system of parameters $f_1, ..., f_d = Q$ of R we have det($\partial f_i / \partial x_j$)=Q. **Proof.** Since $(f_1, ..., f_d)$ is an m-primary ideal of R and $(f_1, ..., f_d) \not\sqsubseteq Q$ there is an integer n such that $m^{n+1}Q \subseteq (f_1, ..., f_d)$ and $m^nQ \subseteq (f_1, ..., f_d)$. Take an element $a \subseteq m^nQ$ such that $a \subseteq (f_1, ..., f_d)$. Then $ma \subseteq (f_1, ..., f_d)$. Therefore $((f_1, ..., f_d) m) \cap Q/(f_1, ..., f_d) \neq 0$. By Lemma 1, $(f_1, ..., f_d) m/(f_1, ..., f_d)$ is a vector space of dimension 1 over k. Hence $((f_1, ..., f_d) m) \cap Q/(f_1, ..., f_d) = (f_1, ..., f_d) m/(f_1, ..., f_d)$. By Lemma 1, we have $det(\partial f_1/\partial x_1) \supseteq Q$. ## Characterization of complete intersection. The following theorem is the main result of this paper. **Theorem 3.** If $f_1, ..., f_d \in m$ satisfy det($\partial f_i / \partial x_j$) \notin ($f_1, ..., f_d$) then $f_1, ..., f_d$ form a system of parameters of R. 148 Shin IKEDA To prove this theorem we need three more lemmas. **Lemma 4.** Let $Q = (g_1, ..., g_d)$ be an m-primary ideal and $f_1, ..., f_d \subseteq Q$. If det $(\partial f_1 / \partial x_j) \not\equiv Q$ then $Q = (f_1, ..., f_d)$ **Proof.** We can write $f_j = a_{1j}g_1 + ... + a_{dj}g_d$. By differentiating with respect to $x_1, ..., x_d$ we have $$\partial f_i / \partial x_k \equiv a_{1i} \partial g_1 / \partial x_k + \dots + a_{di} \partial g_d / \partial x_k \mod Q$$. Then, we get $\det(\partial f_j/\partial x_j) \equiv \det(a_{ij}) \det(\partial g_i/\partial x_j) \mod Q$. If det(a_{ij})=m then det($\partial f_i/\partial x_j$)=Q, by Lemma 1. Therefore, if det($\partial f_i/\partial x_j$)=Q we have det(a_{ij})=m. Hence, the matrix(a_{ij}) is invertible and therefore Q =($f_1, ..., f_d$) **Lemma 5.** Let p be a prime ideal of R such that $p \neq m$ and let $K = R_P /_P R_P$. If htp = r and $x_{r+1}, ..., x_d$ form a system of parameters of R/P then $(R_p)^{\sim} K[[y_1, ..., y_r]]$ and $(\partial/\partial x_1, ..., \partial/\partial x_r) = (\partial/\partial y_1, ..., \partial/\partial y_r) A$ for some invertible matrix A over (R_p) where (R_p) is the completion of R_p . **Proof.** $\partial/\partial x_i$ can be extended to a K-derivation of (R_p) . We can write $\partial/\partial x_i = a_{1i}\partial/\partial y_1 + ... + a_{ri}\partial/\partial y_r$ for some $a_{ki} = (R_p)$. Since $\partial x_i/\partial x_i = \delta_{ij}$ the matrix $A = (a_{ij})$ is invertible. **Lemma 6.** Let q be a primary ideal such that $\sqrt{q} \neq m$. If $f_1, ..., f_d \in q$ then det $(\partial f_i / \partial x_j) \in q$. **Proof.** Let $p = \sqrt{q}$. We separate two cases. Case 1. qR_p is a complete intersection. If htp = r then there are $y_1, ..., y_r \in p$ such that $pR_p = (y_1, ..., y_r)R_p$. Then the pR_p -adic completion (R_p) is isomorphic to $K[[y_1, ..., y_r]]$ where $K = R_p/pR_p$. We can choose $x_1, ..., x_d$ so that $x_{r+1}, ..., x_d$ form a system of parameters of R/p. Then, for $1 \le j \le r$, the k-derivation $\partial/\partial x_j$ can be extended to a K-derivation of K[[$y_1, ..., y_r$]] Suppose that det($\partial f_i/\partial x_j$) $\equiv q$. Then we can assume that det($\partial f_i/\partial x_j$) $\equiv i$ s not contained in q(R_p) by Lemma 5. Then by Lemma 4, $$(f_1, ..., f_r)R_p = qR_p$$. There is an $s \in R$ -p such that $$sf_i = (f_1, ..., f_r)$$ for $r + 1 \le i \le d$. Then $s^{d-r} \det(\partial f_i/\partial x_j) \equiv 0 \mod q$. This implies $\det(\partial f_i/\partial x_j) = q$, a contradiction. Therefore det($\partial f_i/\partial x_j$)=q in this case. Case 2. qR_p is not a complete intersection. We choose generators g_1, \ldots, g_n of $q(R_p)$ so that any r of g_1, \ldots, g_n form a system of parameters of (R_p) . Since det $(\partial f_i/\partial x_j)$ is an (R_g) linear combination of the elements of the form det $(\partial h_i/\partial x_j)_{\leq i \leq r, 1 \leq j \leq r}$, where h_1, \ldots, h_r is a system of parameters of (R_p) contained in $q(R_p)$ By Lemma 2, we have $\det(\partial f_i/\partial x_i) = q$. Now we can prove Theorem 3. Proof of Theorem 3. Suppose that ht($f_1, ..., f_d$) $\leq d$. If ($f_1, ..., f_d$)= $q_1 \cap ... q_m \cap Q$ is a primary decomposition of ($f_1, ..., f_d$), where Q is primary to m then det ($\partial f_i / \partial x_j$) $= q_k$ ($1 \le k \le m$) by Lemma 6 and, by Lemma 2 and Lemma 4 we have det ($\partial f_i / \partial x_j$) = Q. **Corollary 6.** Let $f \in m^2$. Then R/fR has an isolated singularity if and only if the Hessian det($\partial^2 f/\partial x_i \partial x_j$) is not contained in($\partial f/\partial x_1, ..., \partial f/\partial x_d$). ## References [K]Kunz, E., Kähler Differentials, Vieweg, Braunschweig/Wiesbaden, 1986. [M] Matsumura, H., Commutative ring theory, Cambridge University Press, Cambridge, 1986.